
4 ,  

5. 

W. Bienert ,  P.  J.  Brennan, and J. P. Kirkpatrick,  "Feedback controlled variable conductance heat pipes, ~, 
AIAA Paper ,  No. 71-421 (1971). 
G. F. Smirnov,  V. V. Barsukov, and L. N. Mishchenko, "Investigation of the charac te r i s t i cs  of gas -con-  
trolled heat pipes," Vopr. Radio~leketron.,  Ser.  TRTO, No. 3 (1973). 

D E G A S S I N G  D U R I N G  P R O L O N G E D  H E A T - P I P E  

V. V.  G i l ' ,  E .  N. M i n k o v i c h ,  
a n d  A.  D. S h n y r e v  

O P E R A T I O N  

UDC 536. 248.2 

P r o c e s s e s  of noncondensing-gas l iberation, which affect the service  life of heat pipes of the low- 
temperature  range, are examined and analyzed. A method of computing the degassing is proposed 
and a compar ison  with available exper imental  results is made. 

The l iberation of a noncondensing gas in the inner cavity of a heat pipe was detected during service  test-  
ing of low- tempera ture  heat pipes [1, 2], where this gas,  on being accumulated with the lapse of time during 
heat-pipe operat ion,  will col lect  in the condensation zone and diminish it, thus possibly resulting in failure of 
the heat pipe. 

The authors of [2] made an at tempt to find an express ion  governing the mass of gas being l iberated as a 
function of the tempera ture  by means of the results  of experimental  investigations of stainless s t e e l - w a t e r  
heat pipes. The small  quantity of experimental  points and their spread indicate the failure of these tests.  An 
Arrhenius  model [31 was used in [1] to analyze the service  tests of a stainless s t e e l - w a t e r  heat pipe. 

The mass  flow rate of hydrogen evolution m, the time t, and the temperature  are  connected by the re la -  
tionship 

m (txT) = q (t) F (T), (1) 

where F (T) is the displacement  coefficient determined from the Arrhenius equation 

Y - -  const-exp AGo (2)  
kT 

Baker  [1] establ ished a tempera ture  dependence of degass ing,  while Anderson et al. [4] studied stainless 
steel pipes; however, the resul ts  obtained have a par t icu lar  charac te r  and require  an experimental de te rmina-  
tion of the constant. 

A complex approach to degassing processes  in low-tempera ture  heat pipes is considered in this paper, 
and although an analytical examination is ca r r i ed  out for heat pipes with heat c a r r i e r s  containing hydrogen, 
such as water ,  acetone,  ammonia,  etc. ,  the method of computation proposed below can also be extended to other 
heat ca r r i e  rs .  

Many fac tors  affect the quantity of gas being l iberated in a heat pipe; the fundamental ones under the con- 
dition of maintaining vacuum cleanliness and outgassing of the working fluids a re  the following: 1) therraal  dis socia-  
tion of the working fluid; 2) chemical  dissolution of the s t ruc tura l  mater ia l  in the working fluid; 3) e l ec t ro -  
chemica l  d issocia t ion of the working fluid. 

The last  two factors  should be considered as a set, since each affects the other.  It mus t  be noted that all 
the above-mentioned p rocesses  will be observed to a g r e a t e r  or  l e s se r  degree during the operation of any heat 
pipe; hence,  each of the p rocesses  named above yields its contribution to the total quantity of noncondensing gas 
being l iberated in the heat  pipe, i.e., 
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TABLE I .  Hydrogen Liberat ion due to Thermal  Dissociat ion of 
Water  

T, *K Kr Degree of Wt. quantity of Hz~olume quantity of 
dissociation a per cycle,* pg !Hz per year, ml 

323 
373 
400 
423 
473 

12,3.10 -3s 
1 ,2 .10 -85 
5 ,7 .10-ao  

1,04-10 -~s 
5 , 0 1 . I 0 - ~  

1 1 . 1 0  -2a  
2,62 .10-2s  

3 ,2 .10-2o 
4 , 3 . 1 0 - ' o  

I ,  35-10 -17 

Hydrogen liberation 
Practically nonexistent 

6,6.10-x4 3,7.10-11 
8,6-  I0 -12 4 ,4 .10  -~ 
2 ,4 .10  -11 1,3.10 - s  

*A cycle is understood to be the time needed for total evaporation of the fluid M 
charging the heat pipe at the temperature under investigation. 

m t o t =  m t.d -~ inch-}- mech �9 (3) 
Let  us examine each of these p rocesses ,  

Thermal  dissocia t ion of the working fluids under considerat ion is a homogeneous process ,  

2 H20 ~ 2H2 -~ O2, 2NH3 ~ N~ + 3H~, 

whose equil ibrium is subject  to the law of effective masse s  and can be charac te r ized  by the degree  of d i s soc ia -  
tion. The p rocess  of dis sociation of the g rea t e r  port ion pro Ceeds with heat absorption. In conformity with the Le 
Chatel ier  principle,  a tempera ture  r ise in such p rocesses  shifts the equilibrium toward the reaction products,  
and converse ly .  Quantitatively, the t empera tu re  dependence of the equilibrium constant  (or the dissociat ion 
constant) is expressed  by the equation for  the r e a c t i o n  isobar.  

The relationship establishing the connection between the dissociat ion constant  K~, the tempera ture  T, 
and the thermal  effect  of the chemical  react ion has the form [5] 

A H  R T  2 d In Ks = ; 14) 
d T  

since AH = - Q r  (the heat of reaction),  

d In K~ Qr 
d T  R T  z 

Integrating (5) between Tmi n and Tmax,  it is possible to compute Ka: 

Tmax Train 

but by definition 

(5) 

(6) 

a .  a" ~ ~l+n. (7) 
K~ = 1 - -  ~l+n 

Fo r  example,  n = 1/2 for  water ,  i.e., ~1 is the H 2 concentrat ion,  c~ ~/2 is the 02 concentrat ion,  and 1 - ~  l+n 
is the remaining undissociated water .  The quantity of dissociated molecules  per  mole is computed by means 
of the formula 

. l 
n~, = <z. N = K I + "  N (8) 

and the quantity of d issocia ted molecules  in the pipe, filled by the quantity of fluid M, is: 

! 

x = M n ~  = M exp ~ Tmax Tml. 
(9) 

ResuIts of computing the quantity of gas H 2 being l ibera ted  due to thermal  dissociat ion in 1-m- long  heat 
pipes with a 10 mm inner d iameter  and 5 mm of water  a re  presented in Table 1. It is seen from the t ab le  
that degassing due to thermal  dissociat ion of water  is negligible. Degassing due to thermal  dissociat ion under 
the given conditions is severa l  o rde r s  less  for  ammonia and acetone than for water,  since the dissociat ion con-  
s tant  for  these fluids is significantly less  than for water .  

AnMyzing the resul ts  shown in the table, the following deductions can be made: 

1) thermal  dissociat ion of the working fluid s tar ts  only at its boiling point; 
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2) the d i s s o c i a t i o n  r a t e ,  meaning  l i be ra t ion  of the products  of working fluid decomposi t ion ,  inc t e a s e s  
with the r i s e  in t e m p e r a t u r e ;  

3) the quanti ty of gases  being l i be r a t ed  because  of the rmal  d i s s oc i a t i on  of wa te r ,  ammonia ,  and acetone 
is negl ig ible  both for  the opera t ing  t e m p e r a t u r e  of the heat  pipe and fo r  the c r i t i c a l  t e m p e r a t u r e  of the 
fluid (on the o r d e r  of 10 -a ml pe r  y e a r  fo r  water ) .  

The re fo re ,  this p r o c e s s  y ie lds  no s ign i f ican t  contr ibut ion  to the fo rmat ion  of noncondensing g a s e s  in heat 
pipes  with the above-ment ioned  working f luids.  However ,  in some cases  the the rmal  d i s soc ia t ion  p roces s  is 
govern ing  for  the s e l ec t ion  of a heat  c a r r i e r .  Thus, for  ins tance ,  many heat  c a r r i e r s ,  p a r t i c u l a r l y  Dowtherm 
(biphenyl - d i p h e n y l  e the r  coolant) ,  a re  not su i tab le  for  u t i l iza t ion in heat  pipes in the 200-400 ~ t empe ra tu r e  
range because of the s igni f icant  d i s soc i a t i on  ra te .  

During d i r e c t  contact  between the me ta l  and w a t e r  o r  o ther  so lvent ,  pa r t  of the metal  a toms go into solu-  
tion and form a c h e m i c a l  compound (hydroxide,  sa l t ,  e tc . ) .  If the so lvent  contains hydrogen a toms (water,  a m -  
monia ,  acetone) ,  then hydrogen witl  be l i be ra t ed  as a r e su l t  of the r eac t ion  accord ing  to one of the following 
s c h e m e s  : 

Me ~- 2HOH ~-~ Me (OH)~ + H 2, Me + 2NH~ ~ Me (NH2h + H 2. 

The quant i ty  of hydrogen being l i b e r a t e d  can be computed accord ing  to the Raoult  law [6] for  sol id  sub-  
s t ances  : 

Inn = hHpi T - -  Tpl (10) 
TTp l  R 

The d isadvantage  of this method is that the nature of the solvent  is not taken into account  and the quanti ty 
n witl  be a constant  for  ace tone ,  wa te r ,  and ammonia .  

Let  us use the forrnula [71 

A Z  = R T  ln n (11) 

to take account  of the nature  of the working fluid in computing the quanti ty of d i s so lved  meta l .  On the o ther  
hand,  we have 

AZ ---- A H  ~ T A S .  (12) 

Solving (11) and (12) jo in t ly ,  we obtain 

In n - -  A H - -  T A S  (13) 
R T  

In computing n, a t tent ion  should be turned to the ca lcu la t ion  of the i soba r i c  potential .  To do this ,  the p r o -  
ces s  of meta l  d i sso lu t ion  in a given fluid must  be cons ide red .  All the the rmodynamic  c h a r a c t e r i s t i c s  (AH, 
A S , a n d ~ Z )  a r e  ca lcu la ted  taking account  of the changes in valency and aggrega te  s t a t e s :  

AZ tot = AZ1 - -  AZ2. (14) 

The second method takes account  of the enthalpy,  en t ropy,  and the i soba r i c  potent ial  of a given d isso lu t ion  
p r o c e s s .  In this case  the the rmodynamic  c h a r a c t e r i s t i c s  of the so lvent  afford the poss ib i l i t y  of de t e rmin ing  the 
magnitude of the d i s so lved  me ta l  in any fluid. It is i n t e r e s t i ng  to note that  the quant i t ies  n (molar  f rac t ions)  
computed by these methods  for  wa te r  a lmos t  ag ree ,  but do not for  acetone and o ther  f luids.  This can be ex -  
plained by the fact  that  wa te r  is a l m o s t  an idea l  solvent  in its s t r uc t u r e :  it is  p r a c t i c a l l y  nonpolar ,  i . e . ,  i ts  e l e c -  
t ron cloud is d i s t r i b u t e d  uni formly  over  the whole molecule .  Other  f lu ids ,  for  example ,  ammonia ,  e m e r g e  as 
a s t rong  alkal i ,  and the d i s t r i bu t ion  of i ts  e l ec t ron  cloud d i f fe rs  s ha r p l y  f rom that for  water .  Analogous r e a -  
soning can be appl ied  to acetone.  

However ,  the p r o c e s s  of meta l  d i sso lu t ion  in a working fluid occurs  accord ing  to the laws of e l e c t r o -  
chemica l  k ine t ics  (since a potent ia l  d i f fe rence  always ex i s t s  in m i c r o p a i r s  of a ma te r i a l ) ,  when the total r e a c -  
tion is s e p a r a t e d  into the following independent ,  to a cons ide rab le  extent ,  p r o c e s s e s :  

a) an anodic p r o c e s s  (passage of me ta l  into solut ion in the form of ions with the abandonment of an equiva-  
lent  number  of e l e c t r o n s  in the meta l ) ;  
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b) a cation p rocess  (ass imi la t ion  of excess  e lec t rons  appear ing  in the meta l  by some depo la r i ze r s ) .  

F r o m  the viewpoint  of e l e c t r o c h e m i s t r y ,  a heat  pipe can be cons idered  as a galvanic pa i r  submerged  in 
a solution. The potential  d i f ference  between this galvanic pa i r  is computed by means of the formula  

AE ~ .~. r r (15) 

To de te rmine  the true potential  d i f ference  it  is n e c e s s a r y  to take the following fac tors  into account: t em-  
p e r a t u r e ,  so lvent ,  so lvabi l i ty  of Me in the solvent ,  charge  t r a n s f e r  on the Me. All these fac tors  are  taken into 
account  by the fo rmula  [8] 

AE = AE 0 + q~ + RT Inn  (16) 
neF 

Having de te rmined  the potential  d i f ference  of the pa i r  for  d i f ferent  tempe r a tu res ,  the cu r r en t  flowing 
through the e l ec t ro ly te  can be ca lcu la ted :  

I = AE. __1. K,  (17) 
P 

where  the p a r a m e t e r  K is the rat io  between the effect ive a rea  of the inner sur face  of the heat  pipe and the e f -  
fect ive thickness of the fluid l aye r ,  i .e. ,  K = Sef/Sef, 

Then the quantity of d i sso lved  subs tance  can be computed by means of the F a r a d a y  law 

m 1 = • (i 8) 

by two methods .  In the f i r s t  case ,  the quantity ln n i s  de te rmined  by Raoul t ' s  law for  the computat ion of the 
potent ial  d i f ference  &E, and the final fo rmula  has the fo rm 

l r T - -  Tpl] (19 )  
m, = ,, - -  K I. aEo + ~ + ~Hp1 "o"' P 1 . 7 ~  _-j t, 

P 

but, as  has been mentioned above,  this method does  not take into account  the na ture  of the solvent;  hence, a 
m o r e  legi t imate  computat ion is to use the i sobar ic  potential  of the reac t ion  to compute lnn,  i .e. ,  AE, then 

m~ = • - -  K AEo -t- r~ + t. (20) 
p neF 

However ,  not the whole quantity of subs tance  goes  into react ion,  but only those ions whose energy  is 

W ~ AG 0, (21) 

where  AG o is the act ivat ion ene rgy .  I t  can be computed by known methods [9]. The quantity of ions with e n e r -  
g ies  g r e a t e r  than the ac t ivat ion ene rgy  which a re  in solution equals 

P r = e x p ( - -  AGo ) ,  (22) 
~, RT 

where we take into account that the minimum energy of ions going into solution under the effect of the potential 

difference &E is 

Wmin = neqhE ; (23) 

then 

Pr = exp ( AGo - -  neqAE (24) 

Taking account  of (24), we obtain the equal i ty  of subs tance  going into react ion:  

m r=rnlP r = ~ - p  K AEo+~-{  ne F texp ~ ] "  

Knowing the quanti ty of subs tance  going into reac t ion ,  the quantity of hydrogen,  or  o ther  gas ,  being l i b e r -  

ated can be computed [9] (Table 2). 

Such computa t ions  were  p e r f o r m e d  fo r  acetone,  wate r ,  and ammonia  with the following m a t e r i a l s :  AMg, 

AMg--Fe; and IKh18N9T. 

1134 



TABLE 2. Computed  and E x p e r i m e n t a l  Values  of the Quant i ty  of 
Noncondens ing  Gas Being L i b e r a t e d  in a Hea t  p i p e  a f t e r  10,000 h 
of Cont inuous  O p e r a t i o n  

Stainless steel-water i Al-stainte~ steel~water 

7. ~ comp., ~g exp., llg ! comp., pg exp., ~g 

323 40 36 " 89 
373 4,55.10 ~ 3,8.10 z 23. I 0 e 25.10 z 
423 22- I0 -~ 25.10 s [ 14.10 s 
473 57,2-108 
523 14,0.104 

Note. Service testing conducted in a series of 10 heat pipes at T = 373 ~ The spread 
between the poLa~s did not exceed I~/~. 

The r e s u l t s  ob ta ined  we re  c o m p a r e d  with e x p e r i m e n t a l  da t a  ob ta ined  by B a k e r  [t] ,  P e t r i c k  [2], and o t h e r  
r e s e a r c h e r s .  As a r e s u l t  of the c o m p a r i s o n ,  i t  is c l a r i f i e d  tha t  the m e t h o d  p r o p o s e d  d e s c r i b e s  the p r o c e s s  of 
d e g a s s i n g  in l o w - t e m p e r a t u r e  h e a t  p ipes  with s u f f i c i e n t l y  high a c c u r a c y .  

T 

T m i n ,  T m a x  
AGO 
k 
M 

m t o t  
rot .  d ,  mch ,  m e c h  

K~ 
R 

AH 
AS 
A Z  

Q r  
nM 
N 
n 
% 

F 
I 

AE0 
AE 

~o 

~~ ~c 
P 
5of 
Sef  

Wmin  
q 

P r  

mr 

N O T A T I O N  

is the a b s o l u t e  t e m p e r a t u r e ,  ~ 
a r e  the m i n i m u m  and m a x i m u m  o p e r a t i n g  t e m p e r a t u r e s  of the hea t  p ipe ,  r e s p e c t i v e l y ,  ~ 
is the a c t i v a t i o n  e n e r g y ,  k c a l / m o l e  ; 
is the B o l t z m a n n  c o n s t a n t ,  k c a l / d e g ;  
is the m a s s  of f luid f i l l i ng  the p ipe ,  g; 
is the to ta l  m a s s  of g a s  be ing  l i b e r a t e d  in the h e a t  p ipe ,  ~g; 
a r e  the m a s s  of gas  be ing  l i b e r a t e d  due to t h e r m a l  d i s s o c i a t i o n ,  c h e m i c a l  d i s s o l u t i o n ,  and 
e l e c t r o c h e m i c a l  p r o c e s s e s ,  r e s p e c t i v e l y ,  pg:  
ts the d i s s o c i a t i o n  c o n s t a n t ;  
is the g a s  c o n s t a n t ,  k c a l / m o l e - d e g ;  
m the en tha lpy ;  
Is the e n t r o p y ;  
is  the i s o b a r i c  po t en t i a l  of the r e a c t i o n ;  
is the h e a t  of r e a c t i o n ,  kee l ;  
ts the n u m b e r  of d i s s o c i a t e d  m o l e c u l e s  p e r  m o l e  of f luid;  
ts ~ e  A v o g a d r o ' s  n u m b e r ;  
ts the m o l a r  f r a c t i o n  of d i s s o l v e d  m e t a l ;  
ts the n u m b e r  of e l e c t r o n s  tak ing  p a r t  in the r e a c t i o n ;  
m the e l e c t r o c h e m i c a l  equ iva l en t ;  
Is the F a r a d a y  n u m b e r ;  
is the c u r r e n t  th rough  the f luid l a y e r ,  A; 
IS the po t en t i a l  d i f f e r e n c e  in the Vol ta  s e r i e s ,  V; 
is  the p o t e n t i a l  d i f f e r e n c e  in the f lu id ,  V; 
ts the metal c h a r g e  t r a n s f e r ;  
a r e  the anode and ca thode  p o t e n t i a l s ,  r e s p e c t i v e l y ,  V; 
is  the s p e c i f i c  r e s i s t i v i t y  of the f lu id ,  fl" m; 
is  the e f f e c t i v e  t h i c k n e s s  of the fluid f i lm  u n d e r  the po t en t i a l  d i f f e r e n c e ,  m; 
i s  the  e f f ec t i ve  i n n e r  s u r f a c e  o f  the  h e a t  p ipe ,  m2; 

i s  the  m i n i m u m  e n e r g y  of  ions  in the  f luid,  k c a l / m o l e ;  
is the c h a r g e  on the e l e c t r o n ;  
is the probability of finding metal ions with energies greater than the activation energy in the 

solution; 
is the mass of substance entering into reaction, kg. 

1~ 
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A V E R A G E  V E L O C I T Y  O F  B U B B L E S  I N  A F L U I D I Z E D  

B E D  C O N T A I N I N G  P A C K I N G  M A T E R I A L  

D.  M.  G a l e r s h t e i n ,  A .  I .  T a m a r i n ,  
S.  S. Z a b r o d s k i i ,  a n d  V.  P .  B o r i s e n k o  

UDC 532.545 

The expansion of a fluidized bed with var ious  packings in columns of s e v e r a l  d imensions  was 
m e a s u r e d .  The average  veloci ty  of the bubbles and the influence of the packing p a r a m e t e r s  
on this ve loci ty  were  e s t ima ted .  

When a bed of d i spe r sed  m a t e r i a l  is fluidized by a gas ,  gas  cavi t ies  (bubbles) r i se  continuously through 
it; the exis tence  of these is due to the fundamental  instabi l i ty  of the sy s t em [1, 2]. All the gas passing through 
the bed is divided into  two f luxes,  one of these consti tut ing the bubbles,  while the o the r  incorpora tes  the gas  fi l-  
t e r ing  between the suspended pa r t i c l e s .  The two fluxes or  flows d i f fe r  chief ly  as regards  the i r  t ime of exis tence  
in the bed and the i r  conditions of contac t  with the d ' 3 p e r s e d  m a t e r i a l .  With increas ing  f i l t ra t ion veloci ty  the 
flow of the bubble phase i n c r e a s e s ,  while the secoz.d flow va r i e s  ve ry  litt le [3]. This type of flow has a de le -  
te r ious  ef fec t  on the intensi ty  of the g a s - p a r t i c l e  exchange p r o c e s s e s  and reduces  the ef f ic iency of a number  of 
technological  p r o c e s s e s  (catalytic reac t ions ,  sorp t ion ,  etc.) .  

In o r d e r  to inc rease  the homogenei ty  of the s y s t e m ,  a col lect ion of immobile  e l ements  (packing) may  be 
placed in the fluidized bed; these pa r t l y  b r e a k  up the bubbles and g rea t ly  inc rease  the eff ic iency of technological  
p r o c e s s e s  [4-6, 10, 17]. The hydrodynamics  of a l aye r  containing such packing ma te r i a l  have been studied by a 
n u m b e r  of r e s e a r c h  worke r s  in recen t  y e a r s ,  and a cons iderable  propor t ion  of the resu l t s  have been presented  
in review a r t i c l e s  [4, 5, 7]. Even so,  informat ion on this subjec t  is s t i l l  somewhat  sketchy and la rge ly  of a qual-  
i tative natu re .  

In this p a p e r  we shall  se t  out the resu l t s  of an expe r imen ta l  invest igat ion into the effects  of var ious  fo rms  
of packing on the mean veloci ty  of the bubbles in a fluidized bed. This invest igat ion extends ea r l i e r -pub l i shed  
data [8, 11]. 

The eXper imenta l  method was based on a two-phase  model  of the bed, according to which [9] 

Uba = U -- U o -~ U b �9 (I) 

This model allows us to relate the bubble velocity to the expansion of the bed [9, I0] by means of the equation 

u b = (u - -  u 0 ) / / o  ( / / - -  t /0)  -1.  ( 2 )  

Since the posi t ion of the upper  boundary of the bed is hard to m e a s u r e  accura te ly ,  e spec ia l ly  for  high gas  ve loc i -  
t ies ,  we used [11] the wel l -known re la t ionship  between the height of the bed and its mean  poros i ty :  
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Trans la ted  f rom Inzhenerno-F iz ichesk i i  Zhurnal ,  Vol. 31, No. 4, pp. 601-606, October ,  1976. Original a r t i c le  
submi t t ed  November  11, 1975 . . . .  
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